CSS322 - Quiz 3

Security and Cryptography, Semester 2, 2010

Prepared by Steven Gordon on 19 December 2010 CSS322Y10S2Q03, Steve/Courses/CSS322/Assessment/Quiz3.tex, r1573

Question 1 [5 marks]

Calculate the following. A calculator is not allowed. Show calculations/explanations.

(a) $[\phi(23) | \phi(27) | \phi(21) | \phi(29)]$ Answer: ______ [1.5 marks]

Answer. 23: prime number, therefore $\phi(23) = 22$

27: relatively prime: 1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26; $\phi(23)=18$

21: relatively prime: 1,2,4,5,8,10,11,13,16,17,19,20; $\phi(21)=12$

29: prime number, therefore $\phi(29) = 28$

(b) $[\phi(25) | \phi(31) | \phi(37) | \phi(26)]$ Answer: _____ [1.5 marks]

Answer. 25: relatively prime: 1,2,3,4,6,7,8,9,11,12,13,14,16,17,18,19,21,22,23,24; $\phi(25)=20$

31: prime number, therefore $\phi(31) = 30$

37: prime number, therefore $\phi(37) = 36$

26: relatively prime: 1,3,5,7,9,11,15,17,19,21,23,25; $\phi(26)=12$

(c) [$(40 \div 23) \mod 80 \mid (16 \div 17) \mod 42 \mid (20 \div 12) \mod 59 \mid (30 \div 17) \mod 67$] [2 marks]

```
Answer. (40 \div 23) \mod 80 : MI(23) = 7; (40 \times 7) \mod 80 = 280 \mod 80 = 40 (16 \div 17) \mod 42 : MI(17) = 5; (16 \times 5) \mod 42 = 80 \mod 42 = 38 (20 \div 12) \mod 59 : MI(12) = 5; (20 \times 5) \mod 59 = 100 \mod 59 = 41 (30 \div 17) \mod 67 : MI(17) = 4; (30 \times 4) \mod 67 = 120 \mod 67 = 53
```

(d) [$3^{32} \bmod 80$ | $5^{30} \bmod 124$ | $3^{28} \bmod 79$ | $4^{24} \bmod 62$] [Bonus: 2 marks]

```
Answer. 3^{32} \mod 80 = 3^{4^8} \mod 80 = 81^8 \mod 80 = 1^8 \mod 80 = 1
5^{30} \mod 124 = 5^{3^{10}} \mod 124 = 125^{10} \mod 124 = 1^{10} \mod 124 = 1
3^{28} \mod 79 = 3^{4^7} \mod 79 = 81^7 \mod 79 = 2^7 \mod 79 = 128 \mod 79 = 49
4^{24} \mod 62 = 4^{3^8} \mod 62 = 64^8 \mod 62 = 2^8 \mod 62 = 256 \mod 62 = 8
```

Question 2 [2 marks]

Circle one or more of the following 5 algorithms that can be used in or as part of a PRNG:

Blum-Blum-Shub Triple DES RC4 Linear Congruential Generator AES in Counter Mode

Answer. All of them can be used as PRNG

Question 3 [3 marks]

Assume when encrypting 3-bit plaintext with a block cipher with key K, the following ciphertext is obtained:

P	C	Р	C
000	110	100	000
001	001	101	011
010	111	110	101
011	010	111	100

The following ciphertext was encrypted with the above cipher with key K in counter mode (initial value 0): [$100110000 \mid 101111010 \mid 010110001 \mid 001010100$] What is the plaintext?

Answer: _____

Answer. To decrypt in counter mode, encrypt the counter and XOR the result with the ciphertext. Encrypting three values of the counter produces: 110, 001 and 111.

For ciphertext 100 110 000, XOR with 110 001 111 gives: 010 111 111.

For ciphertext 101 111 010, XOR with 110 001 111 gives: 011 110 101.

For ciphertext 010 110 001, XOR with 110 001 111 gives: 100 111 110.

For ciphertext 001 010 100, XOR with 110 001 111 gives: 111 011 011.